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We consider the two-dimensional steady flows of a viscous incompressible fluid 
with viscosity depending exponentially on the temperature. In contrast to the 
numerical methods for solving this problem [l], we reduce the nonlinear system 
of equations describing the flow to an infinite sequence of linear equations of 

elliptic type by means of an expansion in the small parameter appearing in the 
exponent. We construct a majorizing equation for which the existence of positive 
solutions guarantees the uniform convergence of iterations on a neighborhood of a 

zero value of the parameter. As an illustration we study the flow of a viscous 
fluid in a cylindrical tube with a heat source present. 

1. Consider the steady two-dimensional flow of a viscous incompressible fluid 
with the temperature-dependent viscosity given by the Reynolds relation 

1’ !‘,, z c -a7’ 

The system of differential equations of motion, continuity, and energy has the follow- 
ing form [Z] upon the introduction of a stream function and omission of the inertial and 
dissipative 

(1.1) 

The geometrical and physical flow parameters are assumed to be dimensionless,being 
referred to characteristic scaling parameters : the length I,, the difference of tempera- 
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tures 6 T , and the flow velocity V ; fi is a parameter which depends on the nature of 
the fluid and the tem~rature range ; a is the constant coefficient of thermal diff~ivi~, 
let the flow domain be an open connected set 52 of Euclidean space with a piecewise- 
smooth boundary I’. We can then take the boundary conditions in the following form: 

(1.2) 

Here .9\li i 8rr is the normal derivative of the stream function, c is an arbitrary constant, 

and T (1‘) is a function of a point on the domain boundary. In the case of unbounded 
domains it is necessary to impose certain conditions p] on the temperature and the 
stream function. 

Let us assume that the functions 11: (zt g, u) and T (x, y, a) are represented by the for- 
mal expressions m (*I 

Substituting the relations (1.3) into the system of equations (1. l), we obtain an infinite 
system of equations of elliptic type 

AA I~~=:.F, (I@“, &, . . ., 2j,k_l, To, T, . . . T;,_,) (1‘ 4) 

A?‘/; _: I’ + I.^. (q-1, . . . $, 7‘0, . ., 7’;,_J 

In seeking the k-th approximation we take the functions F, and I’, as known. 

When the expansions (1.3) are taken into account, the boundary conditions (1.2) be- 
come 

Thus, to solve the problem it is necessary to integrate nonhomogeneous differential 

equations of elliptic type with the known boundary conditions (1.6). 

2. We turn now to a clarification of the problem concerning the uniform convergence 
of the expansions (1.3) in some interval of variation of the parameter CL If we assume 
boundedness of the flow domain and suitable smoothness of the function T (I’), thestream 
function and the temperature, and their derivatives to the third and second order inclu- 
sive, will be bounded and continuous at a = (1 . Then in the domain Q + I all the 
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succeeding ,h-approximations will possess this property. 
Let 

mill 1 F, (T, ?/) I -r-:- I?/,, I”ax I 1.k (r., ?/) 1 -$ II, z, y E n + r CA 1) 

It is obvious that we can construct sequences of positive numbers h, and c/,~ such that 

(2.2) 

It is known from the theory of elliptic equations [3] that the sequence of positive num- 

bers /I, is bounded from above. We shall assume that the sequence d, possesses the same 

property. We note that the assumption made is invalid in the general case (for the sec- 

ond derivatives of the functions Ti; (x. ?i)), however, there exist a number of practically 
important problems (flow in tubes, diffusors) for which boundedness of the sequence d, 

can be proved on the basis of analysis of ordinary differential equation systems. Thus 

ilk ::' II, 'lp& :< d, I< = 0, 1, 2. . . (2.3) 

Taking the relations (2.3) into account, we can strengthen the inequalities (2.2). Thus 

(2.4) 

As R, and Ii, in the inequalities (2.1) we can take the numbers 

I{, = 3s, i_ 16&s,, If, = 2PS, (2.5) 
h‘__l h_-_2 

SI = 2 2 O,O,,U, (//I ;- II -1. 1 = IL - 2) 
?,l=” ?1=:, 
tl-1 k-1 

s:: = 2 o,u, (m -1 1 = I; - 1). 83 = 2 G,,,U, (/!2 + I : k. 1 > 1) 
17, ==-I, ?,I =” 

Let us form the following series: 
\?. 

cr (1) .= 2 E;‘Lik, 0 _: 5 $0,; (2.6) 
h=O Ii-0 

Taking the relations (2.4) and (2.5) into account, we find the following e.xpressions for 
the general terms of these series: 

1r ,i = ii (8S, + 16S,), o,< = ?.dPS, CL 7) 

By replacing in the series (2.6) all the terms, except the zero terms, by their expressions 
from the Eqs. (2.7), we arrive at the relations 

(2.8) 

After simplifying, we obtain the equation 
4 

(2.9) 
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pL (x) = 32h#12P2a~, p2 (a) = 32hd1280Pa” + 33hdlPa 

p3 (a) = 8h12002a2 + 16h&a + 2dlU,P - 1 

pd (a) = U,90l, 1 = (1 + 2dUoP)-’ 

This equation is a majorant for the functions (1.3) ; the existence of positive solutions 

of (2.9) for 0 < a < a* implies the uniform convergence of the functions cp (5, y, a) 

and T (r, y, a) and their derivatives in the domain Q -I- r under consideration. For 

this case Eq. (2.9) is algebraic in the function It’ (Co and, consequently, the radius of 
convergence is determined after ii’ has been eliminated from the system of equations 

a) (a,* W) = 0, ii@ (c*, u’) / ij~v = 0 

When a 4 1, we have, upon neglecting the a? terms in comparison with the a terms in 

the Eqs. (2.9), the following expression for the radius of convergence of the series (2.6): 

a* _ m - 1/r+ - 1 
ItihOo ’ 

I,, : 1 -I- 4dUJ’ 

3. As an example we consider the flow of a viscous fluid in a cylindrical tube of 
diameter 2R. We assume that at each point of the flow domain there is a constant heat 
source of strength Q; in addition, we assume the tube walls to be maintained at the zero 
temperature. In this case flow of the fluid in parallel jets turns out to have no influence 
on the temperature distribution which is expressed by the following formula [4] : 

T = % (1 - r2), PQR" 
“=-a- (3.1) 

where r is the dimensionless tube radius and L is the thermal conductivity coefficient. 
The equation of motion in dimensionless form 1s given by 

d - 
dr (3.2) 

We assume that the velocity of the fluid is representable as a series in increasing powers 
of a CC 

u (r, a) = 2 rk (r) a'; (3.3) 

Substituting the relation (3.3) into Eq. (3.2) and equating terms with like powers of a, 
we obtain an equation for the li-th approximation in which the right side of the equation 

We take the boundary conditions in the usual form 

?‘& (1) = 0 (A =_ I). 1. “. .), 
i -!j- 

r‘l‘,, (r) ar :~ 1 

1 
0 

s 
rvh.(r)dr = 0 (/i >, 1) 

0 

On the basis of two approximations we determine the flow velocity to be 

2j (r) = 2 (1 - r2) - a/3 (1 - r”) (3r’ - 1) 

(3.4) 

(3.5) 
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The convective terms in the energy equation are identically zero, so that the major- 
izing equation assumes the ~~icularly simple form 

(as + 2a - 8/S”) W + “/%I = 0 (3.6) 

For the existence of positive solutions of Eq. (3.6) it is necessary to consider a < a* = 
0.055. The value a* = 0.055 determines the radius of convergence of the series for 

the velocity and for its first two derivatives ; it is obvious that the radius can be increased, 
but at the expense of a refinement in the estimate for a*. 

Convergence of the 
tion of the identity 

expansion (3.3) can also be established through a direct verifica- 

Here u (r, a) is the exact solution of Eq. (3.2). 
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An integral inequality is obtained for the rate of fluid injection into the boundary 
layer of a streamlined surface. Separation takes place when this inequality is 

satisfied and the pressure gradient is nonnegative. In particular, separation occurs 

whenever the positive injection rate is constant, independently of the magnitude 
of that rate. The results obtained in [l] where it was shown that separation takes 

place at sufficiently high injection rates, are thus refined. 

1. We consider the system 


